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a b s t r a c t

This paper aims at proposing an analytical model for the vibration analysis of horizontal

beams that are self-weighted and thermally stressed. Geometrical nonlinearities are

taken into account on the basis of large displacement and small rotation. Natural

frequencies are obtained from a linearization of equilibrium equations. Thermal force

springs are considered at beam ends, allowing various boundary conditions. A

dimensionless analysis is performed leading to only four parameters, respectively,

related to the self-weight, thermal force, thermal bending moment and torsional spring

stiffness. It is shown that the proposed model can be efficiently used for cable problems

with small sag-to-span ratios (typically o 1
8, as in Irvine’s theory). For beam problems,

the model is validated thanks to finite element solutions and a parametric study is

conducted in order to highlight the combined effects of thermal loads and self-weight

on natural frequencies. For cable problems, solutions are first compared with existing

results in the literature obtained without thermal effects or bending stiffness. Good

agreement is found. A parametric study combining the effects of sag-extensibility,

thermal change and bending stiffness is finally given.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Beams and cables are widely used in civil structures. Such structures are subjected to various external forces. Among
them, self-weight and environmental thermal loads are inevitable. These quasi-static loads yield initial stress (prestress)
and initial displacement (predisplacement) affecting the dynamical behaviour of structures. For thin structures such as
beams, the effect of prestress is enhanced by the slenderness ratio, so that even low prestressed states far from the
buckling stage may have a significant impact on dynamics.

Modal vibration analyses of beams subjected to purely axial prestress have received much attention in the
literature—see Refs. [1,2] for instance. It is well-known that the natural frequencies of flexural vibration increase
(resp. decrease) when the axial load is tensile (resp. compressive) and that this effect is stronger for lower
eigenfrequencies. The effect of axial thermal stress on modal parameters has naturally been included, particularly
recently with the emergence of composite or functionally graded beams [3–6]. For self-weighted vertical beams, the load is
also purely axial, though non-constant, and some linear analyses can be found in Refs. [7–10].

However, geometrical nonlinearities are often neglected in prestressed modal analyses. From the point of view of small
superimposed vibrations, geometrical nonlinearities are regarded as predisplacements, generally related to prebending.
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In practice, bending naturally occurs for large self-weighted beams, thermally prestressed inhomogeneous structures
(thickness varying, composite, functionally graded,y), beams subjected to temperature gradients along their thickness,
non-straight beams,yIn static buckling analyses, the non-negligible effect of initial displacement is rather well-known. It
is yet barely considered in modal vibration analyses, although early works have analytically and experimentally
demonstrated the potential effect of initial bending upon vibrations [11–15]. More recent studies can be found in
Refs. [16–19] for instance, and the reader can refer to Refs. [20–23] for extensions to thermoelasticity. Small vibrations of
self-weighted vertical beams around post-buckled states have recently been analysed in Ref. [24]. To the author’s
knowledge, the vibration analysis of horizontal beams that are naturally prebended under self-weight has not been
explicitly investigated in the literature—if one excepts cables.

The mechanics of cables can be considered as a particular case of beams. As a first approximation, a cable can be viewed
as a geometrically nonlinear beam having no bending stiffness, subjected to self-weight and an externally applied force.
The literature on cable dynamics is large (a review is beyond the scope of this paper), Irvine’s work [25] being one of the
most important contributions. Irvine showed that only one dimensionless parameter is needed to determine natural
frequencies of cables. Recent studies have aimed at taking into account bending stiffness [26–28], which can be significant
for the prediction of higher order modes or large diameter cables. However, the investigation of thermal effects on cable
dynamics has surprisingly not received a great attention in the literature. Only recently, Treyssede [29] extended Irvine’s
model to thermoelasticity.

The goal of this paper is to investigate the effects of temperature on the modal behaviour of horizontal beams taking
into account self-weight, as well as cables taking into account bending stiffness. It is focused on moderate loads yielding
prebuckled configurations (though the approach remains valid for post-buckled cases). Only small vibrations are
considered, which is a necessary assumption for performing a modal analysis in the classical sense (nonlinear vibrations
are beyond the scope of this paper). In Section 2, an analytic and dimensionless solution is derived for the statics and
dynamics of an initially horizontal beam subjected to self-weight, thermal force and thermal bending moment. Torsional
and axial springs are considered at beam ends, which allows various boundary conditions. Dimensionless parameters
are highlighted. The solution is valid both for negative and positive thermal changes (tensile and compressive loads). It
also shown that the proposed model also applies for cables thanks to the calculation of an equivalent thermal parameter
for the cable tension. In Section 3, results obtained for beam and cable problems are presented and considered
independently for clarity. For beam problems, the model is validated thanks to finite element (FE) solutions and a
parametric study is conducted in order to highlight the combined effects of thermal loads and self-weight on natural
frequencies. For cable problems, solutions are first compared with existing results in the literature obtained without
thermal effects or bending stiffness. A parametric study combining the effects of sag-extensibility, thermal change and
bending stiffness is finally given.

One of the motivations of this study is the potential need of adequate models for vibration based methods in structural
health monitoring (SHM). These methods are potentially attractive for damage detection in civil structures [30–35] or
tension estimation [36–38]. However, they are likely to suffer a lack of robustness because of environmental temperature
change (affecting the prestress state and in turn its modal parameters). It is well-known that differentiating changes due to
the environment from changes due to damage is still a challenging task [39–41]. Typical applications in civil engineering
are bridges and buildings subjected to climatic thermal variations: for such structures, the daily variation of natural
frequency may reach several percent [42,43]. In addition to SHM, one could also note that temperature changes may also
affect the robustness of vibration control strategies [44–46].

2. Model

2.1. Assumptions and notations

Here are the beam assumptions adopted throughout the paper:
�
 the beam is initially perfectly straight (no imperfection) and has a horizontal neutral axis, denoted x;

�
 the strain–displacement relationship is based on the Von Karman approximation (nonlinear terms involving the axial

displacement are neglected), which is generally valid for small strains, large displacements, small rotations;

�
 the shear strain is neglected (Euler–Bernoulli kinematics);

�
 the material is linearly elastic;

�
 the axial and rotary inertia are neglected; and

�
 all beam characteristics are uniform along x (material properties, temperature,y).

The only type of nonlinearity is hence geometrical. In prestressed dynamics, three states must be distinguished: the
reference state (unprestressed), the intermediate state (prestressed), and the current state (perturbed by superimposed
dynamics). Fig. 1 depicts the beam profile for its three equilibrium configurations. Equilibrium equations of this paper are
based on a total Lagrangian approach, which means that x represents the position of a material point in its reference
configuration. The present study is restricted to static prestressed states and small linear dynamic perturbations.
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Fig. 1. Beam boundary conditions, loads and profiles for the reference state (thick line), the prestressed state (thin line) and the dynamic state (dashed

line). The prestressed state is under the action of self-weight and thermal loads. The dynamic profile here corresponds to a second symmetric in-plane

mode. Inset: cable boundary conditions (a tensile horizontal force H is applied at the end of the spring instead of a zero axial displacement).
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Quantities referring to the intermediate and current states will, respectively, be denoted with a subscript 0 and a tilde.
The absence of symbol will be left for dynamic perturbations. For clarity, w0 and N0 will denote the beam transverse
predisplacement (vertical) and the axial pretension, while ~w and ~N will be the total displacement and tension. w¼ ~w�w0

and N¼ ~N�N0 will be the corresponding vibrating perturbations.
Note that the Von Karman hypothesis restricts the proposed model to prestressed states for which the static

predeflection w0 and pretension N0 are not too large. As discussed in Section 3.1.2, the validity of the dimensionless results
presented in this paper indeed depends on the value of the slenderness ratio of the considered structure.

Variables are made dimensionless, with the following choice:

~w ¼ ~w�=r; ~N ¼ ~N
�
L2=EI; x¼ x�=L; t¼ t�=tc (1)

The asterisk is used to designate dimensional variables. L is the length of the beam. r is the radius of gyration, defined by
r2 ¼ I=A. The characteristic time tc will be chosen as t2

c ¼ rAL4=EI. E, r, a, A, I and g, respectively, denote the Young’s modulus,
material density, thermal expansion coefficient, cross-section area, second moment of inertia and constant of gravity. k1 and k2

will denote the stiffness of translational axial springs (in N m �1) and C will be the stiffness of torsional springs (in N m), located
at beams ends x� ¼ 7L=2. NT and MT denote the thermal force and thermal bending moment, defined as

ðNT ;MT Þ ¼

Z
A

Eayð1; z�ÞdA (2)

where y¼ T�Tref is the temperature change, Tref being the reference temperature (beam at complete rest). z� is the dimensional
transverse direction of the beam. For clarity, Appendix A gives a brief note on heat transfer and related assumptions that may or
may not be applied for the analysis of civil structures.

2.2. Equilibrium equations

For conciseness, no detail is given on the derivation of beam thermoelastic equilibrium equations, which can be found
elsewhere in the literature—see [47,22,48] for instance. Based on the previously mentioned assumptions and
dimensionless variables given by Eqs. (1) it can be shown that the equations governing the equilibrium of current state are

d4 ~w

dx4
� ~N

d2 ~w

dx2
þ €~w ¼�g (3)

with the axial tension given by

~N ¼
1

1þ f

1

2

Z þ1=2

�1=2

d ~w

dx

� �2

dx�m0

( )
(4)

and the boundary conditions, chosen as follows:

~w
��
71=2

¼ 0;
d2 ~w

dx2
7kd ~w

dx

�����
71=2

¼�m1 (5)

The dimensionless parameters, appearing in Eqs. (3)–(5), are

g¼ rgL

E
s3; m0 ¼

NT

EA
s2; m1 ¼

MT

EAr
s2; f ¼

EA

L

1

k1
þ

1

k2

� �
; k¼ C

EAr
s (6)

where s¼ L=r is the slenderness ratio. g, m0 and m1 are load parameters, respectively, related to the self-weight, thermal
force and thermal bending moment. As can be noticed, their effects are all enhanced by the slenderness ratio (thinner
beams will hence be quite sensitive to a prestressed state). f represents a dimensionless equivalent flexibility due to the
presence of translational axial springs. f ¼ 0 when k1 and k2 tends to infinity (zero axial displacement at ends). k is a
parameter quantifying the effect of torsional springs. Perfectly hinged and clamped boundary conditions can be obtained
by setting k¼ 0 and k-1, respectively.

The fact that the tension ~N remains axially constant (positive when tensile, negative when compressive), as shown by
Eq. (4), is due to the assumption of neglecting axial inertia. As a side remark, it could be checked that parameters
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quantifying the effects of axial and rotary inertia are given by 1=s and 1=s2, respectively. Then, it is worthy to note that
neglecting their effects as done in this paper is only possible for high enough slenderness ratio.

From Eqs. (3)–(6), it can be deduced that:
�
 at equal slenderness ratio, the effect of g increases for longer structures (the dynamics of large civil structures is thus
more likely to be affected by self-weight);

�
 when f b1 (k1; k2-0), ~N tends to zero (the effect of thermal force becomes negligible for axially free beams); and

�
 for kbm1, the effect of m1 becomes negligible (clamped beams are not affected by thermal bending).

2.3. Static prestressed state

For static prestressed states, the equilibrium equations become:

d4w0

dx4
�N0

d2w0

dx2
¼�g

N0 ¼
1

1þ f

1

2

R þ1=2
�1=2

dw0

dx

� �2

dx�m0

( )

w0j71=2 ¼ 0

d2w0

dx2
7kdw0

dx

�����
71=2

¼�m1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(7)

Taking into account that N0 is a constant (to be determined) and the symmetry of the problem (dw0=dx¼ d3w0=dx3 ¼ 0 at
x¼ 0), it can be shown that a general solution of the differential equation of system (7) can be given by

w0ðxÞ ¼ A0þB0 cosh
ffiffiffiffiffiffi
N0

p
xþ

g
N0

x2

2
�

1

8

� �
(8)

where A0 and B0 are constants. Applying boundary conditions at x¼ 1
2 yields

B0 ¼�

g
N0

1þ
k
2

� �
þm1

N0cosh

ffiffiffiffiffiffi
N0

p
2
þk

ffiffiffiffiffiffi
N0

p
sinh

ffiffiffiffiffiffi
N0

p
2

(9)

and A0 ¼�B0cosh
ffiffiffiffiffiffi
N0

p
=2.

Then, substituting Eq. (8) into the expression for N0 in system (7) gives

N0þ
m0

1þ f
þ

B2
0N0

4ð1þ f Þ
1�

sinh
ffiffiffiffiffiffi
N0

p
ffiffiffiffiffiffi
N0

p
 !

�
gB0

ð1þ f ÞN0
cosh

ffiffiffiffiffiffi
N0

p
2
�2

sinh
ffiffiffiffiffi
N0

p

2ffiffiffiffiffiffi
N0

p
0
@

1
A� g2

24ð1þ f ÞN2
0

¼ 0 (10)

Provided that B0 is written in terms of N0, as given by Eq. (9), the solution of the above equation allows to determine the
axial tension N0. This equation must be numerically solved (a Newton–Raphson algorithm is used in this paper). It is
emphasized that the solution given by Eqs. (8)–(10) remains valid for N0o0 also, thanks to the formula:

ffiffiffi
y
p
¼ i

ffiffiffiffiffiffiffi
�y
p

for
yp0, cosh iy¼ cos y and sinh iy¼ i sin y. Note that the last term in Eq. (8) corresponds to the standard cable solution
(parabolic profile) [25], which is recovered when N0 is high enough.

A fundamental result is obtained from a further inspection of Eq. (10), which shows that N0 can indeed be determined
from the following four dimensionless parameters (instead of five):

g2

1þ f
;

m0

1þ f
;

m1ffiffiffiffiffiffiffiffiffiffi
1þ f

p ; k (11)

2.4. Prestressed dynamics

The equations governing the equilibrium of superimposed dynamics are obtained from a direct linearization of
Eqs. (3)–(5), which yields the following eigenproblem:

d4w

dx4
�N0

d2w

dx2
�O2w¼N

d2w0

dx2

N¼
1

1þ f

R þ1=2
�1=2

dw0

dx

dw

dx
dx

wj71=2 ¼ 0

d2w

dx2
7kdw

dx

�����
71=2

¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(12)

where an e�iOt time harmonic dependence has been assumed, O¼otc being the dimensionless angular frequency.
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From a vibrational point of view, the prestressed state acts upon dynamics through the couple ðN0;w0Þ (axial pretension,
transverse predisplacement). Note that f b1 yields N;N0-0, which means that the dynamics of an axially free beam is not
sensitive to the prestressed state.

2.4.1. Antisymmetric modes

Antisymmetric modes verify the conditions w¼ d2w=dx2 ¼ 0 at x¼ 0. Because dw0=dx is antisymmetric, such modes
have a zero dynamic tension N¼ 0. Then, the general solution of the differential equation in system (12) is simply:

waðxÞ ¼ Asinl�xþBsinhlþ x (13)

with the notation:

l7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

0þ4O2
q

7N0

2

vuut
(14)

The superscript a (resp. s) will be used for denoting antisymmetric (resp. symmetric) modes. Applying boundary conditions
at x¼ 1

2 to Eq. (13) gives a two-by-two system for A and B, whose zero determinant is

sin
l�
2

sinh
lþ
2
ðl2
�þl

2
þ Þþk lþ sin

l�
2

cosh
lþ
2
�l�cos

l�
2

sinh
lþ
2

� �
¼ 0 (15)

This transcendental equation can be numerically solved and admits an infinity of eigenfrequencies Oa
n (n¼ 1; . . . ;1). The

only influence of the prestressed state on antisymmetric modes is the axial pretension N0. N0 and k are hence the only
independent parameters for determining antisymmetric eigenmodes.

2.4.2. Symmetric modes

The boundary conditions for symmetric modes are dw=dx¼ d3w=dx3 ¼ 0 at x¼ 0. Their axial dynamic tension N is non-
zero. In the differential equation of system (12), both terms in N0 and w0 are non-zero. Adding the homogeneous solution
to a particular one, it can be checked that a general symmetric solution is:

wsðxÞ ¼ Acosl�xþBcoshlþ x�
N

O2

g
N0
þB0N0cosh

ffiffiffiffiffiffi
N0

p
x

� �
(16)

One must now determine N with respect to A and B. This can be done from the expression of N in system (12) and using
Eqs. (8) and (16). After tedious calculations, one gets the linear relationship:

N¼ a�O2AþaþO2B (17)

where the expressions of a� and aþ are given in Appendix B. Then, applying the boundary conditions at x¼ 1
2 to the

expression (16) yields the following homogeneous system for A and B:

a11 a12

a21 a22

" #
A

B

� 	
¼

0

0

� 	
(18)

whose coefficients are

a11 ¼ cos
l�
2
�a�

g
N0
þB0N0cosh

ffiffiffiffiffiffi
N0

p
2

 !

a12 ¼ cosh
lþ
2
�aþ

g
N0
þB0N0cosh

ffiffiffiffiffiffi
N0

p
2

 !

a21 ¼�l
2
�cos

l�
2
�kl�sin

l�
2
�a�B0N2

0 cosh

ffiffiffiffiffiffi
N0

p
2
þk

sinh

ffiffiffiffiffiffi
N0

p
2ffiffiffiffiffiffi

N0

p
0
BB@

1
CCA

a22 ¼ l2
þ cosh

lþ
2
þklþ sinh

lþ
2
�aþB0N2

0 cosh

ffiffiffiffiffiffi
N0

p
2
þk

sinh

ffiffiffiffiffiffi
N0

p
2ffiffiffiffiffiffi

N0

p
0
BB@

1
CCA (19)

The transcendental equation for O is given by a zero determinant: a11a22�a12a21 ¼ 0. Its numerical solutions are
the symmetric eigenfrequencies Os

n (n¼ 1; . . . ;1). As for Section 2.3, all expressions remain valid for N0o0. The inspection
of Eqs. (19) shows that the independent parameters for the determination of the Os

n are the same as the ones given
by Eq. (11).
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2.5. Cable-like problems

The solution can be readily modified in order to treat cable-like problems, for which an initial positive horizontal force
H (in Newton) is prescribed at one end of the beam (see inset of Fig. 1). The dimensionless parameter associated to the
applied force is denoted x2 and given by

x2
¼HL2=EI (20)

x2 is indeed equal to a dimensionless force N0 corresponding to a prestressed state with no thermal load but self-weight.
Replacing N0 with x2 into the solutions derived in Sections 2.3 and 2.4 yields valid cable solutions with no thermal effect
but bending stiffness, as checked in Section 3.2.1.

From Eq. (10), the equivalent thermal force parameter to the applied force, denoted m0eq
, is given by

m0eq
¼�ð1þ f Þx2

�
B2

0eq
x2

4
1�

sinhx
x

� �
þ
gB0eq

x2
cosh

x
2
�2

sinh
x
2

x

0
B@

1
CAþ g2

24x4
(21)

where

B0eq
¼�

g
x2

1þ
k
2

� �

x2cosh
x
2
þkxsinh

x
2

(22)

The modified axial force caused by thermal change is then given by the solution N0 of Eq. (10) obtained by replacing m0

with m0eq
þm0.

Without bending stiffness, the standard cable parameters are the Irvine sag-extensibility parameter l2 and the thermal
parameter y, whose expressions can be found in Refs. [25,29]. When the bending stiffness is taken into account, a third
dimensionless parameter x is also considered. x is often referred to as the bending stiffness parameter [25,27], measuring
the relative importance of cable and beam action (when x is small, beam action predominates, while cable action is
predominant when x is large).

Noticing that rAgL=H¼ g=sx2, l2 and y can be expressed in terms of dimensionless parameters found in this paper,
namely g2=1þ f , m0=1þ f and x, as follows:

l2
¼

g2

x6
ð1þ f Þ

1þ
g2

8s2x4
ð1þ f Þ

 !�1

; y¼
m0

x2
ð1þ f Þ

1þ
g2

12s2x4

 !
1þ

g2

8s2x4
ð1þ f Þ

 !�1

(23)

A new parameter g=sx2 appears in the above expressions. This parameter is related to the sag-to-span ratio (in Irvine’s
model, the sag-to-span ratio is rAgL=8H¼ g=8sx2). What must be understood is that the sag-to-span ratio is also needed,
in addition to the usual parameters ðl2; y; xÞ, for a precise characterization of cables with bending stiffness (as considered in
this paper). This conclusion coincides with the parametric study of Ni et al. [27], who considered different cable sets having
the same range of l2 and x, but different range of sag-to-span ratio.

Note that Irvine’s model is only valid for small sag-to-span ratio, typically o 1
8, which implies that g=sx2p1 (the model

proposed in this paper is also valid for small-sag-span ratio because of the assumption of small rotation). The influence of
g=sx2 on l2 and y is hence limited. In this paper, the following modified cable parameters are proposed instead:

l02 ¼
g2

x6
ð1þ f Þ

; y0 ¼
m0

x2
ð1þ f Þ

(24)

so that the number of dimensionless parameters governing the problem, now given by ðl02; y0; xÞ, is truly reduced to three.
Also, the dimensionless frequency O0 ¼O=x will be used, as chosen in Irvine’s theory.

3. Results

Provided that one is interested in relatively low temperature change due to climatic variations, the influence of
temperature on material properties is neglected in the following results (without loss of generality).

3.1. Beams

In this subsection, beam ends are held fixed with no applied force, so that the axial tension N0 only results from the
action of self-weight. Solutions are obtained from a Newton–Raphson algorithm. At fixed g, m0 is gradually increased and a
linear extrapolation is used for the initial guess of the next solution. N0 then gradually decreases: if the buckling
temperature is reached, several solutions may exist for N0 (post-buckling regimes) and the lowest jN0j is automatically
selected.
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3.1.1. FE validation

Fig. 2 exhibits the evolution of the first dimensionless frequency O for g¼ 15 and a temperature change m0 varying from
�20 to þ20 (f ¼ k¼ m1 ¼ 0). This first test case corresponds to a simply supported beam having the following dimensional
characteristics: L¼ 1 m, r¼ 0:0029 m, E¼ 2:0eþ11 Pa, r¼ 7800 kg m�3, a¼ 1:2e�5 K�1, g ¼ 9:81 m s�2, and y varying from
�14:4 to þ14:4 K. If the self-weight is neglected (g= 0), the beam remains straight (no prebending) and the following
analytical solution can be obtained for the n th natural frequency:

On ¼ np
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2�m0

q
(25)

This solution is also plotted in Fig. 2 for the first frequency, which clearly shows that for m0 � p2 (p2 being the critical
thermal force), the beam buckles and the 1st mode vanishes. However, if the self-weight is taken into account (g¼ 15), the
frequency then increases. This is due to the fact that the beam is prebent under the action of self-weight, which causes an
increase of curvature and plays the same role as initial imperfections [14] or thermal moments [20]. These results are in
good agreement with FE solutions obtained from an Euler–Bernoulli planar beam model, already presented in Ref. [22]
(this FE model is thermoelastic and takes into account geometrical nonlinearities).

Fig. 3 exhibits the evolution of the first dimensionless frequency O for g¼ 300 and a temperature change m0 varying
from �12 to þ12 (f ¼ k¼ 0). This second test case corresponds to a large simply supported beam having the same
−20 −10 0 10 20
0

2

4

6

8

10

12

14

16

18

μ0

Ω

Fig. 2. Dimensionless 1st frequency vs. temperature change for g¼ 15 (f ¼ k¼m1 ¼ 0). Continuous line: proposed model, dotted line: analytical solution

for g¼ 0, x-mark: FE solution.

−10 −5 0 5 10
18.5

19

19.5

20

20.5

21

21.5

22

22.5

μ0

Ω

Fig. 3. Dimensionless 1st frequency vs. temperature change for g¼ 300 (f ¼ k¼ 0). Black line: m1 ¼ 0, dashed: m1 ¼ þ2:5, dashed dotted: m1 ¼ -2:5,

x-mark: FE solution.



ARTICLE IN PRESS

F. Treyss�ede / Journal of Sound and Vibration 329 (2010) 1536–1552 1543
characteristics as before, except that L¼ 200 m, r¼ 1:2684 m, and y varies from �40 to þ40 K. The cross-section is a
3� 12 m rectangular box of 0.3 m thickness. A linear temperature distribution is assumed across the depth of the cross-
section, yielding a thermal bending moment. Three values of m1 are considered: �2:5, 0, þ2:5, respectively, corresponding
to a temperature difference between the top and the bottom of �19:8, 0 and þ19:8 K (such temperature gradients may
exist in bridge decks [49–51]). As observed, the frequency changes nonlinearly and non-monotically with m0. The presence
of a thermal gradient on the cross-section yields non-negligible differences. A positive gradient (temperature higher on the
top) yields a positive deflection that compensates the self-weight deflection, explaining a decrease of frequency. Inversely,
a negative gradient tends to enhance the deflection, and hence increases the frequency. Also shown in Fig. 3 are FE results
obtained with the code developed in Ref. [22]. Good agreement is found, which validates the proposed analytical model
for beams.

3.1.2. Parametric study

Let us consider the case k¼ m1 ¼ 0 (simple supports, no thermal bending moment). From Eq. (11), the only independent
parameters of the problem are g2=ð1þ f Þ and m0=ð1þ f Þ, so that quite general results can be obtained through two-
dimensional contour plots. A parametric study is briefly reported. Due to large range of variations and for a better clarity of
figures, the axes of contour plots are chosen as ðg2=ð1þ f ÞÞ1=4 and jm0=ð1þ f Þj1=2sgnm0.
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Fig. 4 exhibits the axial force N0 and the predisplacement at centre w0ð0Þ. One focuses on prebuckling regimes and
results are not shown for N0p�p2 (note that the predisplacement w0ð0Þ remains negative). As expected, N0 and jw0ð0Þj
increase as the self-weight parameter increases, N0 and w0ð0Þ decrease as the thermal force parameter increases (heating).
Due to the assumption of small rotation and small strain, it should be noted that the validity of the proposed model is
limited to small values of w�0ð0Þ=L¼w0ð0Þ=s and N�0=EA¼N0=s2 (the validity of solutions hence depends on s).

As far as contour plots are concerned in this subsection, the variation range of g and m0 has been chosen in order to treat
a wider range of problems, from strings to beams including cables. The beam-like zone is concentrated on the lower part
near the origin, where N0 is rather low (which means that the bending stiffness cannot be neglected). The cable-like zone
roughly corresponds to the right upper part of plots, where N0 is high enough for neglecting bending stiffness effects but
where w0ð0Þ=s (sag-to-span ratio) becomes non-negligible. Natural frequencies of strings, which are given by On ¼ np

ffiffiffiffiffiffi
N0

p
,

can be recovered for sufficiently high N0 (negligible bending stiffness) and small jw0=sj (negligible sag): this zone typically
corresponds to the left-hand part of contour plots, where contours becomes vertical lines.

Fig. 5 gives the dimensionless frequency of the first symmetric mode. When g¼ m0 ¼ 0, this frequency is equal to p2. It
greatly increases with self-weight. At fixed g, it is observed that the frequency, which usually decays when heating, can
indeed increase. This is due to the fact although N0 continuously decays, the predeflection jw0j grows when heating and
has a counteracting effect that tends to increase frequencies of symmetric modes.

Fig. 6 shows the frequency contour plots for the second symmetric and first antisymmetric modes. When g¼ m0 ¼ 0,
these frequencies are, respectively, equal to 9p2 and 4p2. For the self-weight parameter range used, the frequency of the
2nd symmetric mode never increases with temperature, which shows that the effect of w0 on higher modes is far less
pronounced than for the first one. As expected no frequency increase occurs for the antisymmetric mode either
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(antisymmetric modes being independent on jw0j, as mentioned in Section 2.4.1). Note that given N0, antisymmetric
frequencies can be analytically determined from Eq. (15) when k¼ 0, and are given by:

Oa
n ¼ 2np

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2p2þN0

p
(26)

The sensitivity of frequencies to boundary conditions is briefly studied by considering the extreme case of clamped ends
(kb1). The plots for N0 and w0ð0Þ are not shown for conciseness. Fig. 7 gives contour plots for the relative change
compared to frequencies obtained with simple supports (k¼ 0). Boundary condition effects turn to be significant for lower
values of g and m0 (in the beam-like zone). The clamping effect tends to become greater for higher modes: the first
antisymmetric mode, usually corresponding to the second natural frequency, is more sensitive than the first symmetric
one. As a side remark concerning the 1st symmetric mode, one can note that there exists a zone where the frequency can
become lower than with simple supports.

The effect of thermal bending moment on the 1st symmetric frequency is given by Fig. 8 for k¼ m0 ¼ 0). This value of k
maximizes the effect of m1 (clamped beams are not affected by m1, as stated in Section 2.2). As explained in Section 3.1.1,
positive values of m1 tend to decrease frequencies and inversely. It can be noted that the effect of thermal bending moment
becomes negligible as the self-weight parameter increases (contour lines becomes horizontal). Also, its effect decreases
and becomes negligible for higher modes (results not shown for conciseness).
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By considering m0eq
þm0 instead of m0 in contour plots, Figs. 4–7 could also be used to obtain cable frequencies. However,

the dimensionless parameters g2=ð1þ f Þ and m0=ð1þ f Þ are far less convenient than Irvine parameters for the parametric
study of cables, as done in the next subsection.
3.2. Cables

In this subsection, the proposed beam model is used for the study of cables, taking into account bending stiffness and
temperature change. An external force H is hence initially prescribed at the end of the self-weighted beam. Thermal
bending moments are neglected.
3.2.1. Validation

A first test concerns the effects of bending stiffness on cable frequencies without thermal loads. The proposed analytical
solutions are compared to existing numerical results presented in Refs. [26,27] for four cables, having different values of
sag and bending stiffness. Analytical frequencies found in Ref. [28] are also given. The cable characteristics are recalled in
Table 1. Clamped supports are used. Table 2 shows the first two natural frequencies. Values obtained with the present
theory agree with the results of literature. Only a slight discrepancy occurs for the 2nd frequency of Cable 2. In the present
paper, it is emphasized that the prestressed state is calculated taking into account both bending stiffness and clamped
conditions, as opposed to Refs. [26–28] where such effects are included for the dynamics only, which might explain small
deviations.

For further insights, Table 2 also shows the results obtained from Irvine’s theory as well as the proposed model with
k¼ 0 (simple supports). It can be concluded that Irvine’s theory is not applicable for Cables 3 and 4, their bending stiffness
being not negligible (x¼ 50:5). Also, bending stiffness mainly acts when boundary conditions are clamped.

A second test aims at evaluating the limitation of the model due to the assumption of small rotation, compared to
Irvine’s model for various sag-to-span ratio (without thermal load). One considers a high prescribed tension, x¼ 100, in
order to reduce the bending stiffness effects. The boundary conditions are simple supports (k¼ 0) with no flexibility
(f ¼ 0). A constant safety factor H=EA¼ 1e�3 is used. The slenderness ratio is then necessarily constant:
s¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffi
H=EA

p
C3162. The other cable characteristics are: E¼ 2:0eþ11 Pa, r¼ 7800 kg m�3, g ¼ 9:81 m s�2. Table 3

compares the sag-to-span and the frequency of the 1st symmetric mode obtained with the present model and with Irvine’s
theory. The length L is varying so that the sag-to-span ratio w0ð0Þ=s sweeps the range ½0:001;0:125� (0.125 is the limit of
applicability of Irvine’s solutions). l2 then varies from 0.064 to 887.6. Quite good agreement is found between both
solutions, even for the highest sag-to-span ratio, which shows the validity of the proposed model for the study of cables.

Table 4 gives results when a temperature change DT ¼ þ40 K is applied (a¼ 1:2e�5 K�1). One can note that the effect of
temperature on frequencies diminishes as the sag-to-span increases. The proposed model is compared to the solution
presented by the author in Ref. [29] (extension of Irvine’s model to thermoelasticity). Both solutions are in good agreement,
which ends the validation of the model for cables.
Table 1
Mechanical and geometric parameters of cables.

Cable l2 x rA (kg/m) g (N/kg) L (m) H (106 N) E (Pa) A (m2) I (m4)

1 0.79 605.5 400.0 9.8 100.0 2.90360 1.5988e+10 7.8507e�3 4.9535e�6

2 50.70 302.7 400.0 9.8 100.0 0.72590 1.7186e+10 7.6110e�3 4.6097e�6

3 1.41 50.5 400.0 9.8 100.0 26.13254 2.0826e+13 7.8633e�3 4.9204e�6

4 50.70 50.5 400.0 9.8 100.0 0.72590 4.7834e+08 2.7345e�1 5.9506e�3

Table 2

Comparison of frequencies with literature (DT ¼ 0 K).

Mode Cable 1 Cable 2 Cable 3 Cable 4

1st 2nd 1st 2nd 1st 2nd 1st 2nd

Finite difference [26] 0.440 0.853 0.428 0.464 1.399 2.679 0.447 0.464

Finite element [27] 0.441 0.854 0.421 0.460 1.400 2.682 0.438 0.461

Ricciardi [28] 0.441 0.855 0.429 0.463 1.400 2.682 0.447 0.465

Proposed model (k¼ 1e3) 0.441 0.855 0.429 0.468 1.393 2.682 0.447 0.460

Irvine [25] 0.440 0.852 0.426 0.463 1.350 2.556 0.426 0.463

Proposed model (k¼ 0) 0.440 0.852 0.426 0.468 1.352 2.576 0.429 0.470
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Table 3

Comparison of results between the present theory and Irvine’s model obtained for various sag-to-span ratios (DT ¼ 0 K).

L (m) 20.91 209.1 418.2 627.3 1045 1673 2612

l2 0.064 6.40 25.52 57.19 156.9 389.6 887.6

Irvine [25] sag-to-span 0.001 0.01 0.02 0.03 0.05 0.08 0.125

f s
1 (Hz) 3.839 0.472 0.332 0.288 0.210 0.135 0.087

Proposed model sag-to-span 0.001 0.010 0.020 0.030 0.050 0.080 0.125

f s
1 (Hz) 3.841 0.472 0.332 0.289 0.211 0.136 0.088

Table 4

Comparison of results between the present theory and Irvine’s model obtained for various sag-to-span ratios (DT ¼ þ40 K).

L (m) 20.91 209.1 418.2 627.3 1045 1673 2612

l2 0.064 6.40 25.52 57.19 156.9 389.6 887.6

y 0.480 0.480 0.479 0.479 0.477 0.472 0.462

Treyssede [29] sag-to-span 0.002 0.014 0.023 0.032 0.052 0.081 0.126

f s
1 (Hz) 2.829 0.496 0.355 0.297 0.207 0.134 0.087

Proposed model sag-to-span 0.002 0.014 0.023 0.032 0.052 0.081 0.126

f s
1 (Hz) 2.831 0.496 0.356 0.298 0.209 0.135 0.088
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3.2.2. Parametric study

The combined effects of thermal loads and bending stiffness on cables are investigated for the following ranges of
variation: l02 2 ½1;200�, y0 2 ½�1; þ1�, x 2 ½25;300�. One considers clamped supports (k¼ 1e3, f ¼ 0), which maximizes the
effects of bending stiffness.

In order to highlight bending stiffness effects without thermal stress, Fig. 9 first exhibits two-dimensional contour plots
of O0=p¼ f ðl02; xÞ for the first antisymmetric mode and the first three symmetric modes. Frequencies tend towards
asymptotic limits as the bending stiffness parameter increases, corresponding to Irvine’s solutions. As opposed to
antisymmetric modes, the influence of x on symmetric modes is strongly dependent on l02. Generally, this influence tends
to grow for higher values of l02 and for higher modes. The same conclusions were already found in Refs. [27,28] and show
the importance of taking into account bending stiffness in cable dynamics.

The effects of temperature can be quantified from two-dimensional contour plots of DO=O¼ f ðl02; y0Þ,
where DO=O¼Oðl02; y0Þ=Oðl02;0Þ�1 is the relative change in natural frequency under the influence of temperature.
Fig. 10 plots the relative change of the 1st antisymmetric frequency for x¼ 300 and 50. For both values of x, the
frequency sensitivity is slightly higher when cooling. For fixed values of y0, this sensitivity gradually becomes
lower for cables having larger l02. Note that comparing temperature sensitivity for different values of l02 at fixed y0

implies that the ratio between the working stress H=A and Young’s modulus E should remain almost constant. For a
given cable material, comparisons for fixed y0 are hence indeed made for an almost constant safety factor, which is
meaningful [29].

Concerning bending stiffness effects, the comparison of results in Fig. 10 between x¼ 50 and 300 shows that the
difference of thermal relative change remains o1 percent between x¼ 50 and 300: bending stiffness does not have a
significant effect on the thermal behaviour of this frequency.

Fig. 11 plots the change of the 1st symmetric frequency for x¼ 300 and 50. Let us first consider the case x¼ 300. The
thermal behaviour of this mode is strongly dependent on l02 and quite different from Fig. 10. Roughly, the frequency
relative change is rather small above logl02 ¼ 4:5 (l02C90). Between 2.5 and 4.5 (l02 between 12 and 90), it is more
pronounced and the frequency is increasing with temperature. Below logl02 ¼ 2:5 (l02C12), the behaviour changes again.
For y0o0 (cooling), the first frequency is increasing as the temperature is decreasing. However, for y040 (heating), the
modal behaviour is more complex: the frequency might increase or decrease depending on the value of l02 as well as of y0.
The frequency might be not monotically varying with respect to temperature change, as it is the case for logl02 ¼ 2 (l02C7)
for instance (the frequency tends to increase for any negative or positive temperature change). As already explained for
beam-like problems, the fact that the frequency can increase with temperature is due to the modification of sag (curvature
increase, which counteracts the decrease of tension).

Unlike the first antisymmetric mode, the thermal relative change of Os
1 is strongly affected at x¼ 50. For instance at

logl02 ¼ 4:5 (l02C90) and y0 ¼ þ1, the relative change due to temperature is 0 percent for x¼ 300 and 5 percent for x¼ 50.
The action of bending stiffness combined with thermal change is hence clearly non-negligible.

Fig. 12 plots the change of the 2nd symmetric frequency for x¼ 300 and 50. The effect of bending stiffness upon this
mode is also significant (differences of several percents exist between both x). However, the thermal behaviour of the 3rd
symmetric mode is quite less affected at x¼ 50 (Fig. 13), which tends to show that the bending stiffness influence on
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Fig. 10. Relative change in natural frequency ð�100Þ of the 1st antisymmetric mode for x¼ 300 (a) and x¼ 50 (b).
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Fig. 11. Relative change in natural frequency ð�100Þ of the 1st symmetric mode for x¼ 300 (a) and x¼ 50 (b).

lo
gλ

’2

−1 −0.5 0 0.5 1
0

1

2

3

4

5

lo
gλ

’2

−1 −0.5 0 0.5 1
0

1

2

3

4

5

θ’ θ’

ΔΩ/Ω*100 ΔΩ/Ω*100

−1
5

−15

−1
0

−10

−9

−9

−9

−8

−8

−8

−7

−7

−7

−6

−6

−6

−5

−5

−5

−4

−4

−4

−3

−3

−3

−3

−2

−2

−2

−2

−1

−1

−1
−1

−1 −1

00

0
0

0 0

1
1

1
1

1

1

2
2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

15

15

−1
5

−15

−1
0

−1
0

−10

−9

−9

−9

−8

−8

−8

−7
−7

−7

−6

−6

−6

−5

−5

−5

−4
−4

−4

−3

−3
−3

−3

−2

−2
−2

−2
−2

−1
−1

−1
−1

−1 −1
00

0
0

0 0

1
1

1

1

1

1

2
2

2

2 2

3
3

3

3

4
4

4

5
5

5

6
6

6

7

7

7

8

8

8

9

9

9

10

10

10

15

15

Fig. 12. Relative change in natural frequency ð�100Þ of the 2nd symmetric mode for x¼ 300 (a) and x¼ 50 (b).
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thermal relative change of frequencies decays for higher modes. It can also be noticed that as the mode order increases, the
thermal behaviour becomes identical to that of antisymmetric modes (compare Fig. 10 with 13), due to the fact that higher
modes are less sensitive to predisplacement (as already noticed for beams).

As a final remark, results obtained in Figs. 10–13 for x¼ 300 coincide with the ones found in Ref. [29] with neglected
bending stiffness.

4. Conclusion

A unified analytical model has been proposed to investigate the effects of temperature on the modal behaviour of
horizontal beams taking into account self-weight, and cables taking into account bending stiffness. Various boundary
conditions can be considered thanks to the introduction of axial and torsional springs. Solutions are valid for small
rotations. For cables, the sag-to-span ratio must remain small (typically o 1

8 as in Irvine’s theory). Dimensionless
parameters governing equilibrium equations have been highlighted. For beams, it has been shown that the number of
independent parameters is reduced to four. These parameters are, respectively, associated with the self-weight, thermal
force, thermal bending moment and torsional spring. A fifth parameter related to the prescribed force is introduced for
cable-like problems, corresponding to the so-called bending stiffness parameter x. Some modified Irvine parameters have
been proposed in this paper, allowing a precise characterization of cables with bending stiffness.

For beam problems, the model has been validated thanks to FE solutions and a parametric study has been briefly
conducted in order to highlight the combined effects of thermal loads and self-weight on natural frequencies. For cable
problems, solutions have been compared with existing results in the literature obtained without thermal effects or bending
stiffness. A parametric study combining the effects of sag-extensibility, thermal change and bending stiffness has been
briefly performed. It has been found that the effect of bending stiffness on the thermal relative change of frequencies can
be important.

Results show that the thermal loads due to climatic variations can have a significant effect on the natural frequencies of
slender beams and cables. Under self-weight, frequencies have a complex thermal behaviour, which may be nonlinearly
and non-monotically varying with respect to temperature. The thermoelastic behaviour of civil structures is hence likely to
affect the robustness of vibration based methods in SHM.

Appendix A. Note on heat transfer

As assumed through the whole paper, the temperature does not vary along x. For simplicity, let us also assume that it
also remains constant along y. The problem is reduced on the transverse direction z of the beam. The physics of heat
transfer being different from that of beam mechanics, z� and t� are made dimensionless with some different characteristic
length and time, denoted e and tc

0 . e is typically chosen as half the thickness and tc
0 must be representative of the heat

process (roughly, one day for climatic variations).
k, C and h will, respectively, denote the thermal conductivity, specific heat capacity and convection heat transfer

coefficient. qv and qs will be the time of rate of heat generated per unit volume (for instance, due to the hydration reaction
of cement for concrete structures) and time rate of heat transfer per unit area on the boundary (due to solar radiation
for instance).

Heat transfers in beams are governed by the differential equation [48]:

_T�Fo
d2T

dz2
¼f�bTref _e (27)

and its associated boundary condition:

7
dT

dz
þBiðT�T1Þ

����
71=2

¼j (28)

where T1 is the air temperature and e is the axial strain of the beam. Dimensionless parameters are defined as:
Fo¼ ktc

0 =rCe2 (Fourier number), Bi¼ he=k (Biot number), b¼ Ea=rC (thermomechanical coupling parameter), f¼ qvtc
0 =rC

and j¼ qse=k.
For standard civil materials (concrete, steel), b� 1 so that the last term of Eq. (27) can be neglected thanks to the

assumption of small strain. This a priori justify the usual assumption that heat transfer equilibrium equations are not
coupled to mechanics (throughout this paper, the temperature is considered as known). When Fob1, the heat process can
be considered as stationary. When Bi is small enough, the temperature can be considered as constant on the cross-section.

Let us consider a civil structure made of standard concrete and subjected to climatic thermal changes: E¼ 30 GPa,
a¼ 1e�5 K�1, r¼ 2400 kg m�3, C ¼ 850 J kg�1 K�1, k¼ 2 W m�1 K�1, h¼ 20 W m�2 K�1, tc

0 ¼ 43 200 s (12 h). This yields
Fo¼ 0:042=e2 and Bi¼ 10e. For large civil structures such as bridge decks, e is 41 m so that, generally:
�
 the evolution of temperature cannot be considered as stationary;

�
 the temperature does not remain spatially constant on the beam cross-section (thermal bending moment cannot be

a priori neglected);
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�
 the mechanical evolution of a thermally prestressed state is quasi-static, provided that for climatic change, the heat
characteristic time tc

0 is far greater than the mechanical characteristic time tc .
For cables made of steel, one has: E¼ 200 GPa, a¼ 1:2e�5 K�1, r¼ 7800 kg m�3, C ¼ 500 J kg�1 K�1, k¼ 20 W m�1 K�1, so
that Fo¼ 0:22=e2 and Bi¼ e. e is generally small enough for the temperature to be considered as almost uniform on the
cable cross-section (but the heat process cannot be considered as stationary).

These remarks justify assumptions used in this paper. Examples of heat transfer analyses and thermomechanical effects
applied to civil structures can be found in Refs. [49–51] for instance.

Appendix B. Expressions of a� and aþ

The expressions of a� and aþ are, respectively, given as:

a� ¼

g
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and:

aþ ¼
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